(x-3)(x+3)=^-8(x-2)

Simple and best practice solution for (x-3)(x+3)=^-8(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)(x+3)=^-8(x-2) equation:



(x-3)(x+3)=^-8(x-2)
We move all terms to the left:
(x-3)(x+3)-(^-8(x-2))=0
We use the square of the difference formula
x^2-(^-8(x-2))-9=0
We calculate terms in parentheses: -(^-8(x-2)), so:
^-8(x-2)
determiningTheFunctionDomain -8(x-2)+^
We add all the numbers together, and all the variables
-8(x-2)
We multiply parentheses
-8x+16
Back to the equation:
-(-8x+16)
We get rid of parentheses
x^2+8x-16-9=0
We add all the numbers together, and all the variables
x^2+8x-25=0
a = 1; b = 8; c = -25;
Δ = b2-4ac
Δ = 82-4·1·(-25)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{41}}{2*1}=\frac{-8-2\sqrt{41}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{41}}{2*1}=\frac{-8+2\sqrt{41}}{2} $

See similar equations:

| x3 | | 7(x+14)=70 | | 5x-0.6x^2+(5/(1+x))=0 | | X2-3x=340 | | 3-(2x-3)=0 | | 3/2×(-1+x)(5/2x+2)(1-3x)=0 | | 27-12x=0 | | 4(2-x)-8x=7(1-x) | | -17-6x=5x+27 | | 25+4x=-50 | | 14-x=54-9x | | 12y-12y=15-15 | | 〖3x〗^2=1/3 | | 〖5x〗^2=125 | | .2x-11=7x+4 | | .-4x+9x=45 | | 5(4x+3)=-3x-8 | | 10x^2+0.1-0.1x=0 | | 6.5x=8.5 | | 4z/7+8=-1 | | -4=2(x+90 | | 100⋅24x=15 | | 30=5(x+9) | | 9x2-12x-32=0 | | 6x-9x+9=19x+3610x-19 | | 9x+9=19x+36 | | 5x+17=x+17 | | 3n^2+n=310 | | 72y-3=25 | | 3*x^2+15*(x+4)=14*x*(x+4) | | 3x/4+4=24 | | 2/3x=49 |

Equations solver categories